A Two-Dimensional Vehicle-Media Interaction Model For Wheeled Vehicles

By

Daniel C. Creighton (USAEWES)

Robert E. Walker (ARA, Inc.)

Deformable Terrain: Interface

•Interface Between VEHDYN and VMI Models

-RED Arrows: Forces applied by vehicle to terrain elements from vehicle dynamics model (VEHDYN)

-BLUE Arrows: Distribution of elemental (RED) forces to individual VMI element nodes using 50/50 rule

Deformable Terrain: Methodology

- •RED Elemental forces are result of VEHDYN's tire model interacting with instantaneous terrain profile.
- •VMI is solved using BLUE boundary forces (possibly many times per VEHDYN time step) to determine net interface deformation during current VEHDYN time step.
- •Each VMI ground element has its own property profile (as input). A loading history is maintained for each element and node. This history is stored at regular intervals to a restart file for multiple pass use.
- •Nodal displacements from VMI define the instantaneous terrain profile at start of each VEHDYN time step.

•M998 HMMWV over Soft Flat Profile

VEHDYN Horizontal DOF: Traverse Simulation

- •Currently, vehicle moves "magically" at constant speed.
- •To implement traverse simulation capability via VEHDYN, the ability to accelerate/decelerate is required to adjust the vehicle's forward speed as traction requirements/availability change.
- •A horizontal degree of freedom at the vehicle's center of gravity provides for a non-zero horizontal acceleration by solution of the equation $F_H = ma_H$.
- •This horizontal equation of motion is integrated to provide the instantaneous (changing) horizontal speed component.

Typical course layout for data collection and validation testing

M1078 LMTV used in validation testing

Rutting formed by LMTV used in validation testing

LMTV Multiple-Pass Rutting Data at Yazoo City, MS

Unloaded LMTV Truck Over Buckshot Clay at 2 MPH

Field Test vs Calculation For LMTV at Yazoo Clay Site

Relevant Force Components For Traction Resistance

VMI Force Components at Tire-Soil Interface

Total Horizontal Force = Motion Resistance

VMI model schematic: Dynamic Footing Analogy

 $R_{\rm b}$ = motion resistance function

 R_f = soil rutting function

 R_s = soil traction function

 n_g = radiation damper

 $n_f = flow damper$

 $n_b = internal damper$

Local Normal Sinkage Model

$$F'AQ^B$$

Q' normalized sinkage ' $\left(\frac{\text{rut depth}}{\text{tire width}}\right)$

F' normalized soil resistance

$$F' \begin{cases} W/C(bL) & \text{(clay soils)} \\ W/G(bL)^{3/2} & \text{(sandy soils)} \end{cases}$$

VEHDYN Vehicle Dynamics Model

VEHDYN Spring Element

VEHDYN Continuous Spring Model For Tires

VMI Normal Damping

Soil Flow Damping $n_f \cdot C_D Dv^2$

C_D ' drag coefficient

D' soil wet density

Soil Radiation (Newtonian) Damping n_g ' Cv

C' critical damping coefficient ' $2.\sqrt{KM}$

v' soil normal particle velocity at VMI interface

. ' damping ratio

K' unloading stiffness (Figure 3)

M' mobilized mass moving with VMI interface

Data of Soil Resistance Acting on Tires in Clay

Data of Soil Resistance Acting on Tires in Sand

Vertical Soil Layering Model

Sinkage
$$Q (=z/b)$$

$$F ' \begin{cases} A_{i} Q^{B_{i}} &, 0 < Q < D_{i} \\ A_{i\%1} (Q \& D_{i} \% DS_{i\%1})^{B_{i\%1}} &, D_{i} < Q < D_{i\%1} \end{cases}$$

Longitudinal Load-Unload Model and Mobilized Mass

$$F_{x}$$
 \ \begin{cases} U \) x \, \ F_{x} \# F_{U} \\ F_{U} \, \ F_{x} > F_{U} \end{cases}

F_x ' longitudinal force

U ' unload slope

) x ' differential longitudinal displacement

 F_{II} ave. $CI \times cross section A$

M ' DAL ' mobilized mass

A 'longitudinal cross section '2 r_o b

D' soil wet density

r_o ' footprint equivalent circular radius

b ' tire width

L ' VMI grid spacing

Additional Force and Layering Modifications

•Tire embedment:

$$\frac{K}{K_o}$$
 2 & e $\frac{H_Y}{r_o}$

K ' effective soil stiffness

K_o ' original soil stiffness

H_Y ' rut depth

r ' equivalent contact area radius

•Load-Unload Cycling From Mult-Pass:

CI '
$$CI_o \{ (RI \& 1.) (1.\& e^{\&n}) \% 1. \}$$

CI ' new cone index

CI_o ' original cone index

RI ' remold index

n ' no. load&unload cycles

•Layer Thickness Reduction:

) t'
$$t_o \left(1 \& \frac{H_Y}{\text{pivot}} \right)$$

) t ' layer thickness reduction

t_o ' orig. layer thickness

pivot . $2 \times footprint length$

